

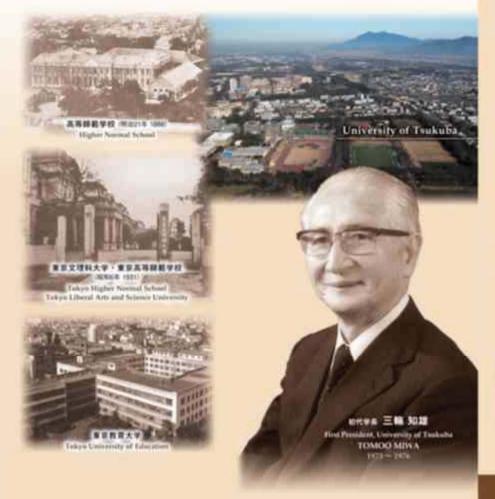
Rice In litate Mura

3 R's 5 | 's **1** M

AKI UNIVERSITY (School of Agriculture, Ami-machi) okyo University of Agriculture and Technology]

1993-2013

SHOWA UNIVERSITY SCHOOL OF MEDICINE TOHO UNIVERSITY FACULTY OF SCIENCE


UNIVERSITY OF TSUKUBA

2013年 筑波大学大学院共通科目

Graduate General Education Courses (GGEC) Program 2013 University of Tsukuba

英波大学の目指す大学院教育 - 大学院用湯州日の図23-

BRATH 本田 基介

ANY DESCRIPTION OF THE PARTY OF THE PARTY OF THE PARTY. STREETO-SHED-WALLO BESSTONIANTS DISCUSTORS COMMANDED THE RELEASE BARRETS OF the last to be plating as a long second DUDGO: TRESCOND CHRESTS CRUCKFOTHER PERSON OF A PRESIDENCE CONTINUES. NUMBEROWS, NUMBEROWS, NAME OF THE PARTY OF T FREEERSCOREST-RECORT.

MERCICLY MENSIONS/SERVICE/COURSE DEDWENT-MORESTER, KREEKCESTU/BRALD DEVENTED CHARLEST COLUMN LOC. BELL-F-POTRETTALISHESSANCIA. GREEN RESTAURTE. EVO. NVICESIONALINGUESINGS. (BPA) ALA MIN BREZECKBRICECBERRICECBURGETERIN, FO ON COCKWEASHING CHITE, TO-KARETERY ACRCS AND PECALL SAMPOINS, INSURA WALL OF THE RESIDENCE OF STATE OF THE PARTY OF THE PARTY

ANTERNATIONAL PLANS TO THE PARTY OF THE PART · 1. 在日本市場中の日本の大学、大学、日本工作の日本日本の日本の日本の一方で

god. To the artists per this pilled armite from the computed the pasture content shall been related accomplishments. The ACM program nature plastics who process provide design and

transported staffs to cross which ratio for the forms.
The VEDE program is a recorded to white transport with professional staffs and a staff source of

大学絵共通料目への開持

西州村下海下湖 門江 瀬森

PADDRETT, NYBORNYARECHIJOSEDAY DEFENDANCE AND DESCRIPTION OF THE PARTY OF T 大学性度で毎日日和学・テレアを参考していますが、他出れる SALUES, STREET, DOUGH, DOUGH, AND SETT AND QUARTER OF PARTY CAMBER OF STREET, DESCRIPTION OF PARTY CAMBER OF STREET, DESCRIPTION OF STREE ANTEL REAL CONTRACTOR STREET, CONTRACTOR STREET, STREET, CONTRACTOR ST

「人間力」と「リーダーシップ」の演奏

四年日 | 日本日本 | 日本日本日本 | 日本日本 | 1985年 |

WILEY SETTLE CONTINUES TAXBELLE . Not recome because the set and DESCRIPTION OF THE PARTY OF THE THE RESERVE AND ADDRESS OF THE PARTY ADDRESS OF THE PARTY ADDRESS OF THE PARTY AND ADDRESS OF THE PARTY ADDRESS OF THE PARTY ADDRESS OF THE PARTY ADDRESS OF THE PARTY AND ADDRESS OF THE PARTY AND がらし への知れが発音しています。 ローダーシップ H. WELLTHONWHOODISHS, TARKS COMMENT ALL PERSONS AND CONTRACTORS AND ADDRESS AND AD THE ROOL OF BETTER LOCALITY AND ADDRESS OF STREET STREET, SELECTION OF SEPARATE

ACTV program a figure triand at providing the new C. RAYSCANDERSON OF DESCRIPTION OF D

http://www.tsukuba.ac.go/education/g-churres/kyputsuskanoku.php

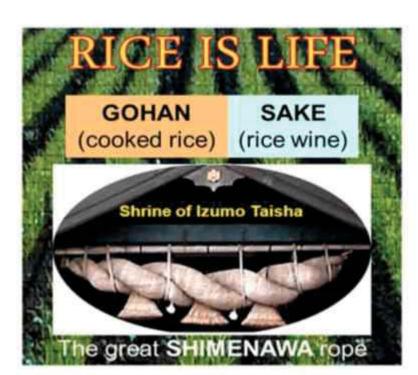
Aim and Need for Graduate General Education Courses - Prof. Yoshihiro Shiraiwa,

Provost, Faculty of Life and Environmental Sciences, University of Tsukuba

The aim of offering Graduate General Education courses is to enhance the quality and develop the ability of graduates at University of Tsukuba as well as to nurture rich human qualities. The current society needs to have academic researchers to acknowledge responsibilities and contribute to the society. We hope to have graduates who are aware of the necessity of satisfying the professional and social needs.

GGEC program offers courses to prospective candidates fostering cultural accomplishments and integrity coupled with professional skills, leading toward well-balanced researchers. Based on the basic skills and knowledge students have acquired during their undergraduates days, candidates are requested to go to the next step to fulfill his/her potential. Candidates should be flexible and sensible to respond to the social needs and to enhance one's career development.

RICE: GREEN GOLD...

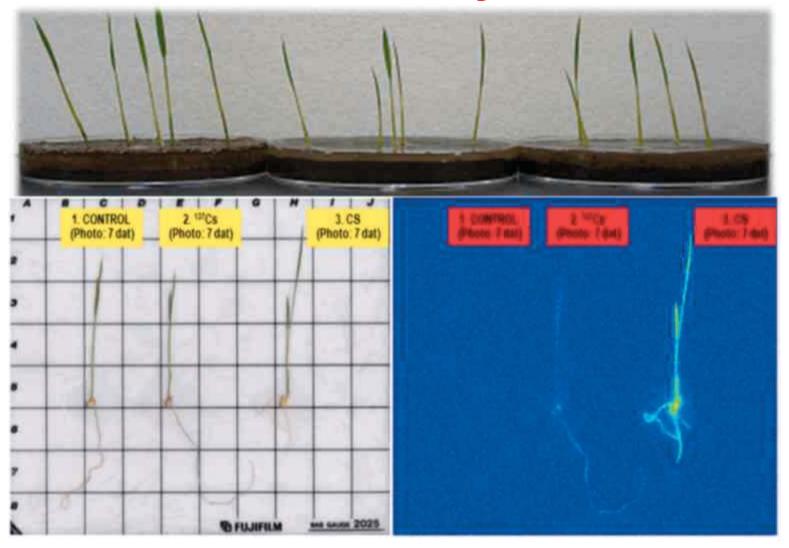

1. Rice is Life

"Rice is not only FOOD for Billions

from Food Security to Bio-Fuels, RICE is in the NEWS

Rice Annotation Project Database (RAP-DB) WhoGA (Whole Genome Annotation) http://gp.dos.affic.go.jp/E-IRGSP-tap-db1 html http://gp.dos.affic.go.jp/whoga/index.html.es-Beijing Genomics Institute-Rice Information System (BGI-RIS) http://rice.big.ac.cn/rice/index2.jsp Rice Genome Annotation Project http://rice.plantbiology.msu.edu gen.nig.ac.jp/rice/oryzabase/top/top.jsp Oryzabase Rice Functional Genomics (from gene - protein - to metabolite)

International Rice Genome Sequencing Project (IRGSP)

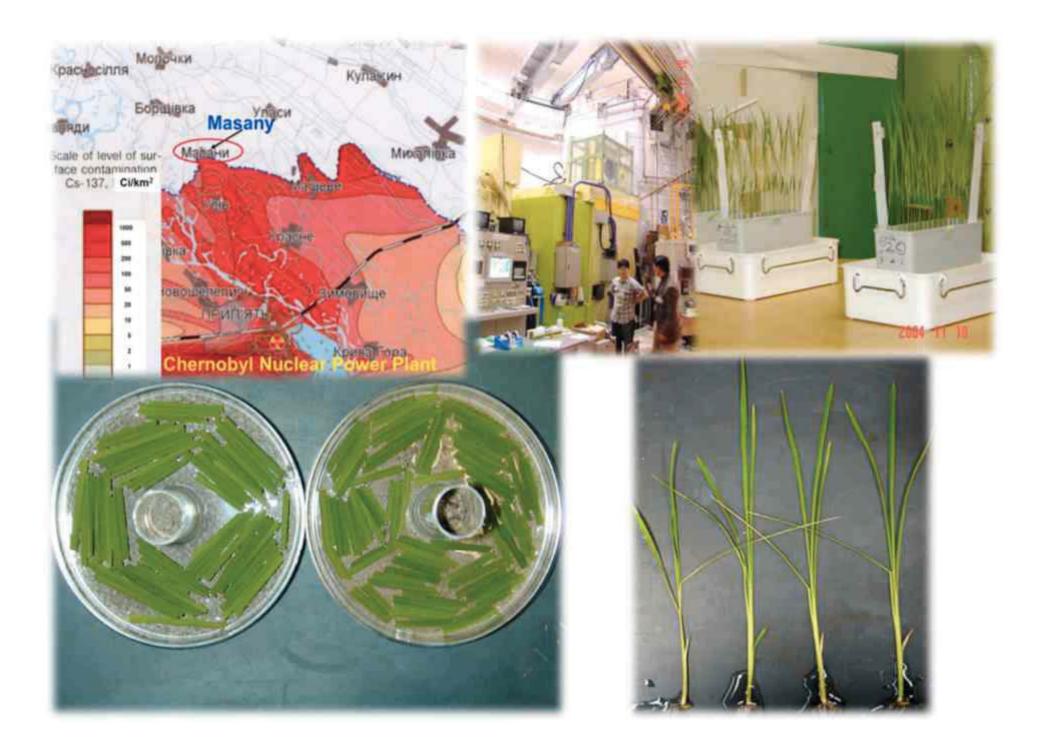

http://rgp.dua.affrc.go.jp/E/IRGSP/index.html

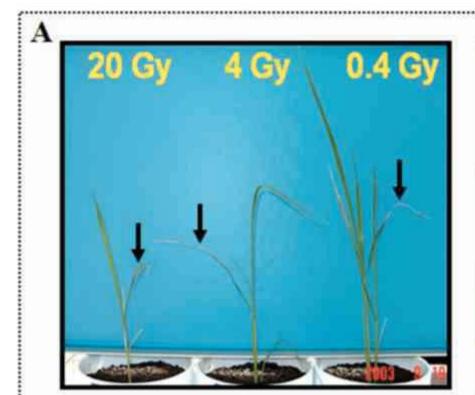
RICE PLANT BIOLOGY

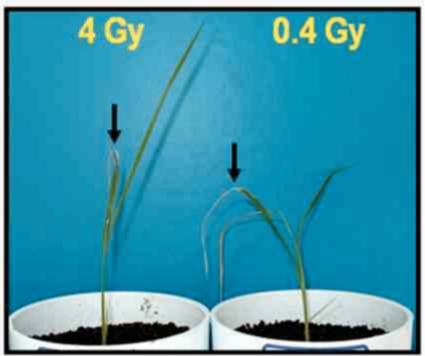
but also a GENOME MODEL Plant"

RADIATION: Decade of Work

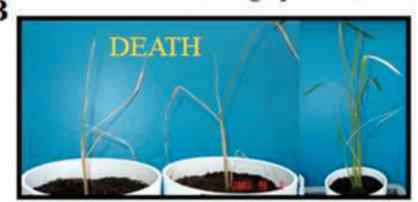
- 1. Contaminated Soil/Gamma radiation
- 2. Two-week-old model system for stress




"Today, Chernobyl's soil, water, and air are among the most highly contaminated on Earth."



After Chernobyl, they refused to leave


By **Holly Morris**, Special to CNN / November 8, 2013 -- Updated 0148 GMT (0948 HKT) http://edition.cnn.com/2013/11/07/opinion/morris-ted-chernobyl/index.html?iid=article_sidebar

Photographed: 10 DAI (days after irradiation)

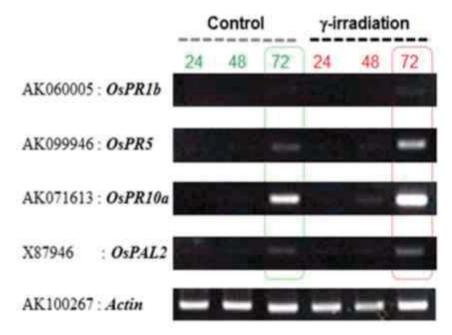
Photographed: 20 DAI (days after irradiation)

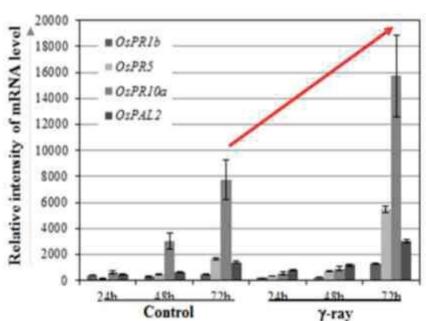
RADIATION BURST

CONTINUOUS (Low Dose)

Plant Material

SAMPLE PREPARATION & TREATMENTS




- 1. BG cut-control (CC) 5.0 ± 0.4 μGy/3 day
- 2. 13 ± 1 µGy/3 day
- 3. 25 ± 2 µGy/3 day
- 4. 45 ± 2 μGy/3 day
- 5. 110 ± 10 μGy/3 day
- 6. 190 ± 10 µGy/3 day
- 7. $380 \pm 20 \mu Gy/3 day$

8. BG whole-control (WP) $4.5 \pm 0.2 \,\mu\text{Gy/3}$ day

Molecules and Cells 12003 200

15. Microarray analysis of rice leaf response to radioactivity from contaminated Chernobyl soil

S. KIMURA', J. SHIBATO', G.K. AGRAWAL', YK. KIM', BH. NAHM', NS. JWA', H. IWAHASHI' and R. RAKWAL

- 1) Hazard Assessment and Epidemiology Research Group, National Institute of Occupational Safety and Health (NIOSH), 6-21-1 Nagao, Kawasaki, 214-8585 Japan
- 2) Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukubu West, 16-1 Onogawa, Tsukuba, 305-8569 Japan
- 3) Research Laboratory for Agricultural Biotechnology and Biochemistry, Kathmandu Nepal
- 4) Division of Bioscience and Bioinformatics, Myongji University, GreenGene BioTech Inc., Kyonggido, 449-728 Korea
- 5) Department of Molecular Biology, College of Natural Science, Seiong University, Seoul, 143-747 Korea

Correspondence: Dr. Randeen Rakwal

Tel & Fax: +81-29-861-8508; E-mail: rakwal-68/araist.go.jp (R: Rakwal)

Int. J. Mol. Sci. 2009, 10, 1215-1225; doi:10.3390/jmis10031215

Marte San Josef, Saptern Roules, Kontachi Tarankas, and Mitoshi Pergepubli Remain Reman Segment Bernardon to Contrar (1986), Segment there are nelleged and building and Security and Ecological Section 1986, Technical Medical 14 f December Francis 965-9749, James الإنجاب والمنافئ والمنافز والم Appropriate Proceedings Server Remove Court for Charged Person. Memory Science because of Rodology of Secretary (NRS), Page 248-1131. Japan

Time-dependent Gene Expression Changes

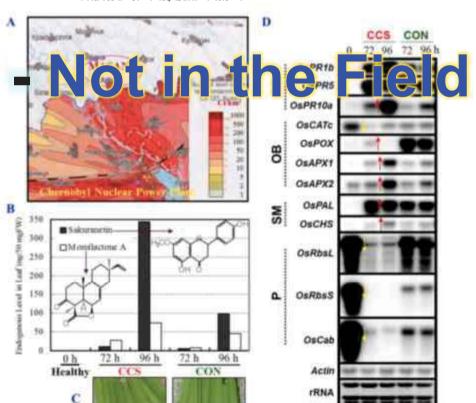
"Furnished & accome, and Burder access. Mangel Faunt as, Green Com, Bulliot by , Sanger 149-119, Aures, "Superconnected their algo the page of latings of Kanagat Sergers, September and Server 1811 Server

Growth Retardation and Death of Rice Plants tradiated with Carbon ion Beams is Preceded by Very Early Dose- and

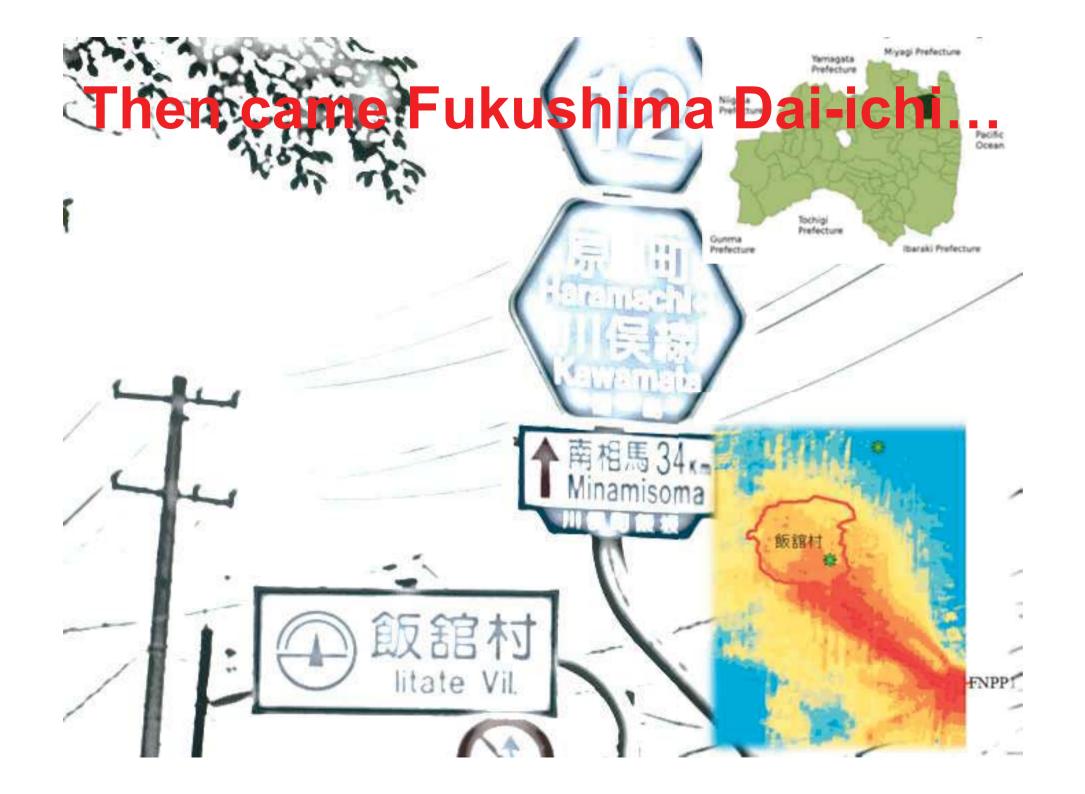
Randerp Makust^a, Stoure Kunnes^a, Jos ke Shittote, Komer Heginn^a, Yean-Ra Kim^a, Buck He Painn^a,

Research Institute for Restaurant Backeys and Materials, Procedures Lancerste, Considera, 174 #171, Agent

(Received July 17, 2007), in asymptotic for configuration (1, 1007).


Ditternational Journal of Molecular Sciences In the Labora

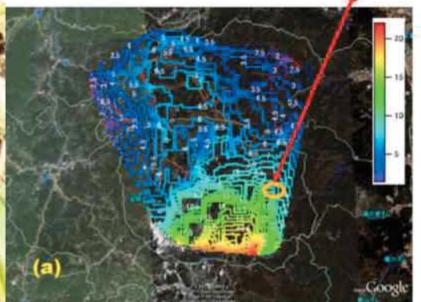
Ultra Low-Dose Radiation: Stress Responses and Impacts Using Rice as a Grass Model


Randeep Rakwal (LL), Ganesh Kamar Agrawal Jonko Shibato J. Tatmiji Imanaka J. Satuchi Fukutani *, Shigeru Tamogami *, Satoru Endo *, Sarata Kumar Sahoo *, Vashinari Masun * and Shines Kimura *

- 1 Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), West, Tudosba, Burgly 305-8569, Japan; E.Maile marketimithy com (LS.): y-manurolitairt go jp (Y.M.)
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO Box 8207, Kathmando. Nopal, E-Mails: plastproteomics@pmail.com (R.R.); pkagrussal123@pmail.com (G.K.A.)
- 3 Research Reactor Institute, Kyoto University (KURRI), Osaka, Japan;
- E-Maile: imanakaŭitro kynto-u.ac. jp (T.I.); fokutanijiro kynto-u.ac. jp (S.F.)
- Laboratory of Growth Regulation Chemistry, Akita Prefectural University, Akita 010-0195, Japan; E-Mail: tamo-chemičakita-pu.ac.jp.
- Graduate School of Engineering, Historhima University (HU), Historhima, Japan; E-Mail: endostichiroshima-u.ac.ip-
- Bessurch Center for Radiation Protection, National Institute of Radiological Sciences (NIRS). Chiha 263-8555, Japan: E-Mail: saboxidnirs po in
- Department of Research Planning and Coordination, Japan NIOSH, Kawanaki, Japan; E-Mail: kimuratith intesh go.jp.
- * Author to whom correspondence should be addressed; E-Mail: rukwal-485/aint.go.jp. Tel. +81-29-861-8508; Fax: +81-29-861-8508

Received: 5 February 2009; in revised form: 11 March 2009 / Accepted: 13 March 2009 / Published: 36 March 2009.

IITATE



Contamination level of the experiment field by Cs-137 (August 2012)

700 kBq/m²

I-1

I-2

I-3

Table 1. Measurement of soil samples (φ5 cm × 10 cm).

Capacity of the core : $\phi 5 \text{ cm} \times 10 \text{ cm} = 196 \text{ cm}^3$ Ground area of the core : $19.6 \text{cm}^2 \text{ (=0.00196m}^2\text{)}$ $[kBq/m^2] = ([Bq/g] \times [g] / 0.00196m^2) \times 0.001$

Sampling date 2012/08/16 Measurement date 2012/11/02

Measurement at KURI by Germanium Semiconductor Detector

Cs-134	Cs-137	[g]	Cs-134	Cs-137
[Bq/g]	[Bq/g]	rei	[kBq/m2]	[kBq/m2]
8.7	16	109	483	862
3.1	5.4	194	307	537
3.2	5.5	234	376	660

Health Physics: The Radiation Safety Journal

Volume 102, Number 6

"EARLY RADIATION SURVEY OF HEAVILY CONTAMINATED BY THE FUKUSHIMA DAIICHI ACCIDENT, CONDUCTED ON 28 AND 29 MARCH 2011"

Tetsuji Imanaka, Satoru Endo, Masuro Sugai, Shoji Ozawa. Kiyoshi Shizuma, and Masayoshi Yamamoto

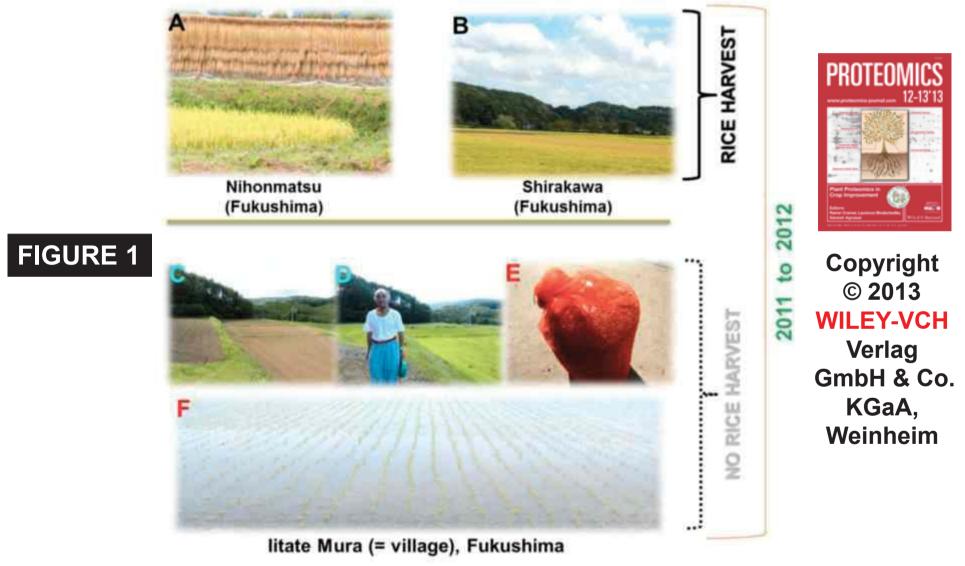
飯舘村放射能エコロンー研究会 (HSORA) 福局シンボジウム

福島原発事故が飯舘村にもたらしたもの

~村民、支援者、ジャーナリスト、研究者の視点から~

主傷と複数技数射能エコロジー研究会

MEGURO san


Meguro san wants to Grow Rice

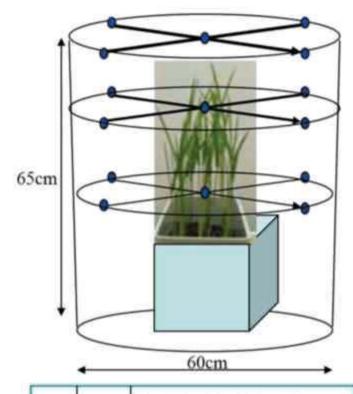
PROTEOMICS Annual Reviews Issue 2014

Rice proteomics: a model system for crop improvement and food security

Sun Tae Kim¹, Sang Gon Kim², Ganesh Kumar Agrawal^{3,4}, Shoshi Kikuchi⁵, and Randeep Rakwal^{3,4,6,7}

07-Nov-2013 Dear Prof. Dr. Rakwal, I am pleased to inform you that your manuscript, "Rice proteomics: a m odel system for crop improvement and food security", is now acceptable for publication in PROTEOMICS....

Experimental



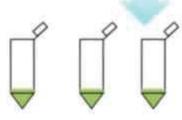
•: To measur dose rate in the shielded box

~	180	μSv/3	days
---	-----	-------	------

		SNEWC
	В	1.5 1.5 1.5 1.5 1.9
++	C	1.6 1.6 1.5 1.6 1.9
	T	1.7 1.7 1.7 1.7 2.0
+	В	2.5 2.5 2.5 2.5 2.8
	C	2.4 2.4 2.5 2.5 2.8
	T	2.6 2.5 2.5 2.5 2.9
•	В	4.2 4.3 4.3 4.2 4.3
	C	4.2 4.3 4.3 4.3 4.3
	T	4.2 4.2 4.3 4.2 4.3

B:bottom C:center T:top

 $[\mu Sv/h]$


High: \sim 280 μ Sv/3 days

Low: ~ 100 μ Sv/3 days

Rice (Oryza sativa L. cv. Nipponbare) in Low-level Gamma Field

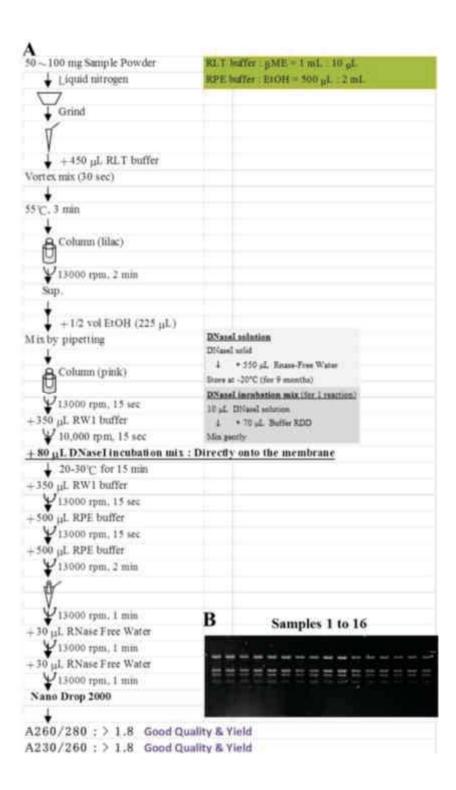
Grind Leaf Samples in Liquid Nitrogen and Divide into Aliquots in 2.0 mL Microtubes & Store in Deep Freezer (-80°C)

High-throughput Genomics and Proteomics Approach

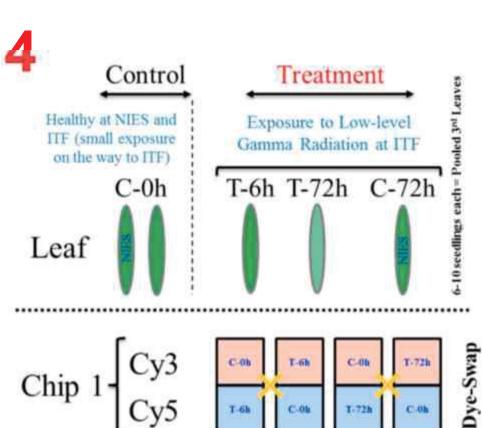
CANDIDATE GENES and PROTEINS DIFFERENTIALLY EXPRESSED

upon EXPOSURE to LOW-LEVEL GAMMA (*) RADIATION

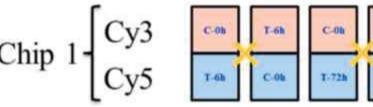
Blind Sampling

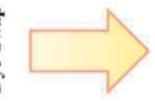


GRINDING

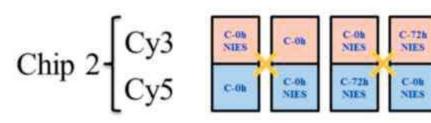

3.2. Preparation of Tissue Powders for Protein Extraction

1. Grind 100 mg of plant materials to a fine powder with liquid N, in a mortar and pestle. (see Note 23).


RNA

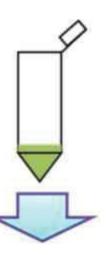


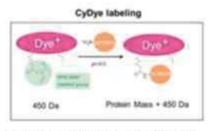
4 x 44K custom oligo-DNA microarray chip


(Catalog number G2514F: Agilent Technologies, Palo Alto, CA; GEO ID: GPL 7252) [G3 Scanner, AGILENT]

ITF - litate Farm, litate Village, Fukushima NIES - National Institute for Environmental Studies

Differentially **Expressed Genes - ITF**


Differentially **Expressed** Genes - Control

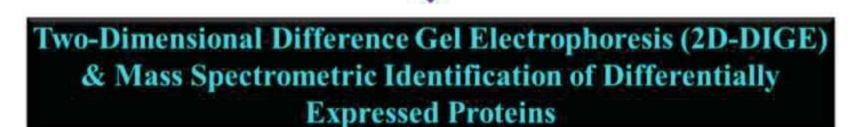

> (0 h - early morning changes) (72 h - growth effects at NIES)

GENE

Dye-Swap

CyDye has sensitivity down to 25 ng of protein Cy2, Cy3, and Cy5 has same charge and mass

Protein Extraction in Lysis Buffer-TT (LB-TT)


- Clean Up
- Re-solubilization
- Determination of Protein Quantity

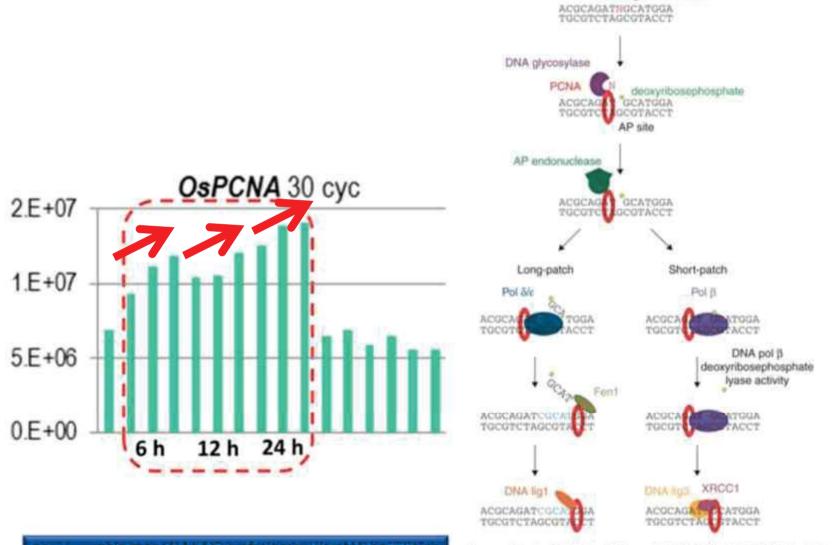
(ProteoExtract Protein Precipitation Kit)

(in 100 µL LB-TT)

(Bradford-BSA & NanoDrop 2000)

Lyophilized powder (after clean-up sample)

PROTEIN


RESULTS - 1

RESULTS - 2

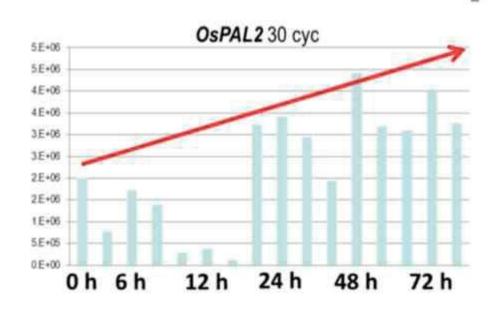
Proliferating Cell Nuclear Antigen is a key factor in DNA replication

Note - NOT INDUCED BY UV-IRRADIATION

Ann Bot. 2011 May;107(7):1127-1140.

Damaged DNA base

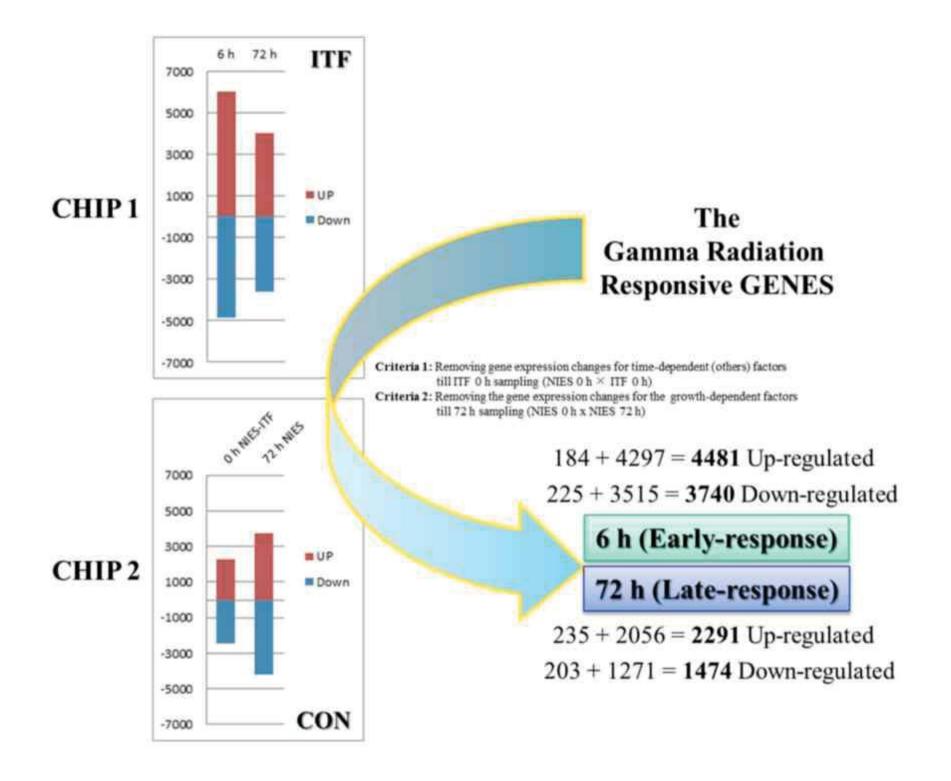
Phenylalanine Ammonia-Lyase


(Phenyl propanoid pathway of Plants)


Contribute to all aspects of plant response to STRESS

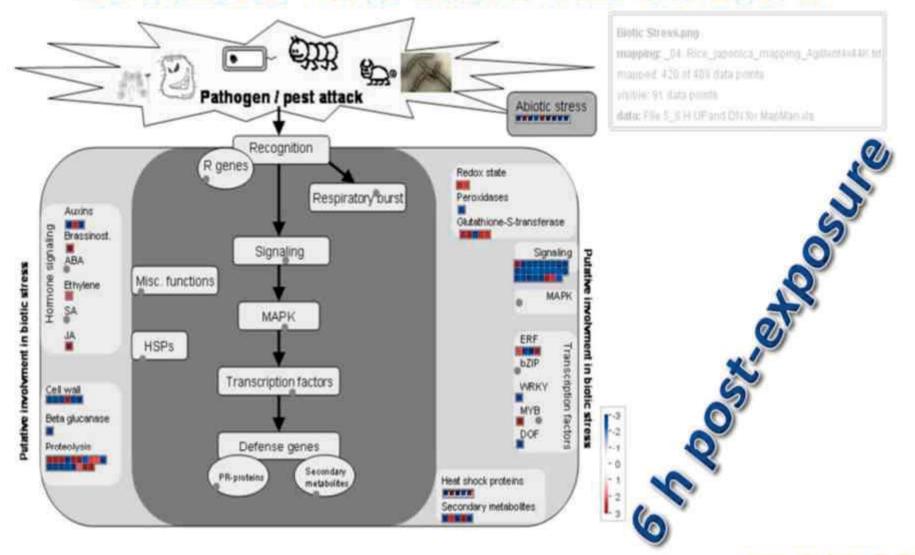
Pathogenesis-Related 10a (PBZ1)

(Probenazole-InducedProtein1)


Plant DEFENSE/STRESS
response related
(RNAse activity)
(Involved in Cell Death)

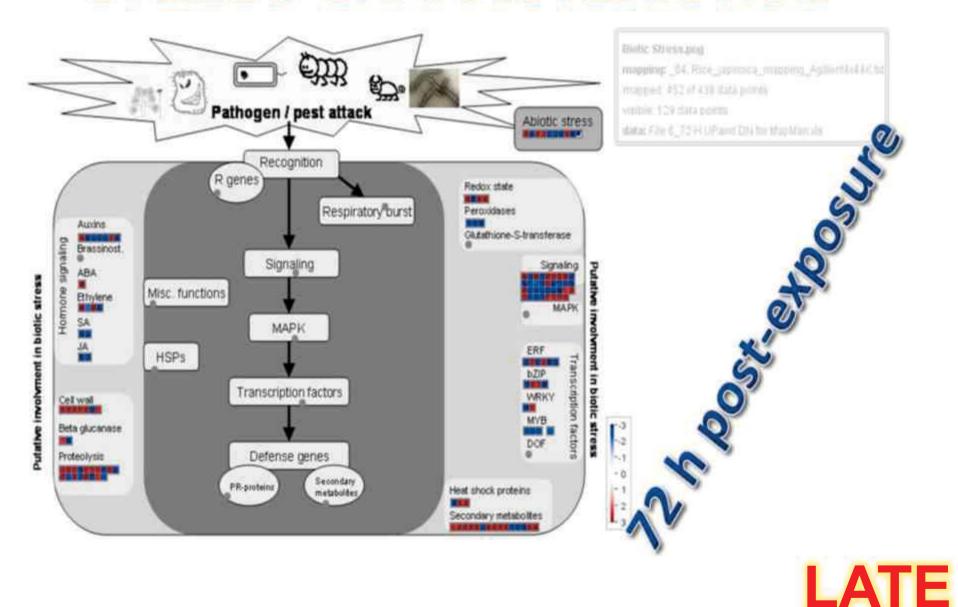
RESULTS - 3

				251784510080_1_1			251784510080_1_2					251784510080_1_3			251784510080_1_4								
								0h x 6h H			swap					0h x 72h H			swap				
Probe	Sys	ster	annota 🔻	descrip 🔻	AK	v	Seque	gProces	rProce	Fold	gProcr∓	rProce	Fold	average Log 🔻	average Fold ▼	gProces	rProce	Fold	gProcr∓	rProce	Fold	average Log 🔻	average Fold ▽
R5_c01_0	LOC	C_Os0	TBC dom	RabGAP	AK24	42339	GGTAAT	2192	2643	1.21	1701	1486	0.87	0.23	1.18	885	933	1.05	767	867	1.13	-0.05	
R5_c01_0	LOC	C_Os0	expresse	d Conserve	AK05	59894	GTTACG/	13	60	4.78	33	15	0.45	1.70	3.25	12	30	2.47	14	14	1.03	0.63	
		_		Similar to					564	1.87	547	272	0.50	0.95	1.94	188	318	1.69	292	160	0.55	0.81	
R5_c01_0	LOC	C_Os0	expresse	d Similar to	AK06	67316	GTTGGT	9185	6446	0.70	5788	7982	1.38	-0.49	0.71	5988	4335	0.72	3920	5030	1.28	-0.41	0.75
R5_c01_0	LOC	C_Os0	R3H dom	Single-stra	a AK12	21362	TGTGTAG	10423	9756	0.94	9384	10472	1.12	-0.13	0.92	6921	6296	0.91	5649	6927	1.23	-0.22	
R5_c01_0	LOC	C_Os0	40S ribos	c Similar to	AK12	21523	CCCAAT	4467	34182	7.65	35564	4810	0.14	2.91	7.52	2457	11379	4.63	12536	2822	0.23	2.18	4.5
				Protein of					2739	0.80	2848	2697	0.95	-0.12	0.92	2195	1619	0.74	1969	2269	1.15	-0.32	0.8
R5_c01_0	LOC	C_Os0	sphingosi	n Pyridoxal	- AK24	43573	GTTGTAC	13463	13503	1.00	12248	12565	1.03	-0.02	0.99	8891	7515	0.85	6432	7939	1.23	-0.27	
		_		n 2,3-diketo					608	0.25	672	2186	3.25	-1.84		1884	9598	5.10	9131	1721	0.19	2.38	
R5_071_0	LOC	0_040	snurporán	Conserve	roc'	Opt	потота	791	287	0.36	319	658	2.06	-1.25	0.42	471	1514	3.22	1475	490	0.33	1.64	10000
R5_d/1_0	LOC	0.040	hypoheto	NONE	100	_040	TAGTTGA	- 11	13	1,18	16	14	0.87	0.22		12	15	1.30	14	14	1.04	0.16	
R5_d1_0	LOC	0,040	nucleic ac	: RNA-bind	AKŒ	9957	cratea	1045	939	0.90	1176	1156	0.98	407	0.96	880	982	1.12	993	775	0.78	0.26	10000
R5_001_0	LOC	0.060	chaperone	Heat shoo	LOC	040	тесатт	23431	5593	0.24	4543	20487	4.51	-2.12	0.23	15314	7561	0.45	6204	14511	2.36	-1,20	24
R5				Conserve					206	15.11	192	1517	3,41	13.15	0.7	7218	200	9.27	.511.	1700	.4.00	9.55	9.20
R5	LOC	0,040	ENDMAN	NONE	LOC	040	100001	58	183		-	//	21		- 0	163	(-		-	10	3
R5	LOC	0_040	4	100		6			45	14			0.42	-		48		0.9	-	50	0.73	0	11
R5	LOC	0,04		20	AKTE		CC I		10873	8			72	16	4	705	The same	1.5	199619	7552	0.74	-	4
R5	100	-	(🐷	-	AKO	U	●/	10	72354	100	-	100	- 1	9		■ V2	1	3 35	34	149	1.77	6 W.	1 3
R5		_	\smile		AKS!				361	100	334	144	-	-36		-		0.6	-	106	1.14		0.77
				Shkimate				5909	13756	2.32	10541	4103	0.39	1.29	2.44	2727	12349	4.42	12211	2418	0.20	2.24	
R5_c01_0	LDO	0.04	tensiocon	Transloco	AH06	3774	тасста.	5704	8352	1.25	7005	5335	0.79	0.36	1,28	3968	2773	0.70	2505	3893	1.49	-0.55	0,68
R5_d1_0	LOC	0,04	mecenno.	DEADIDE	AKOR	\$4456	ACAAAA	2620	1910	0.73	1769	2835	1.50	4.57	9.67	1931	1176	0.61	1024	1870	1.83	-0.79	0.53
R5_c01_0	LOC	COV	MECHANIC.		LOC	Out	GATATTO	21	34	0.69	14	17	1.15	-0.38	2.77	14	15	1.11	31	15	0.49	(0.58	
R5_c01_0	LOC	0.00	TEXT BOX	1	LOC	Out	TCAACG	41	13	0.32	12	45	3.83	-5.78	0.29	31	15	0.49		47	3.40	-1.40	0.38
R5_o01_0	LOC	2_040	light induc	Light regul	AKO	JIVI.	990900	8096	5172	0.64	5849	7107	1.22	-0,85	0.72	5207	222	0.04	341	5031	14.77	4.22	0.05
R5_c01_0	R01	-TIGR		Non-prote	AK06	66123	TAACCA	32	28	0.88	61	21	0.35	0.68	1.60	32	16	0.51	49	23	0.47	0.06	1.04
R5_c06_2	LOC	C_Os0	protein LE	Late embr	AK06	63726	TAATCAC	17	2620	158.22	2385	46	0.02	6.49	90.17	13	14	1.11	15	15	1.03	0.05	1.04
R5_c01_0	LOC	C_Os0	peptide tra	TGF-beta	AK05	58723	CACCAC	1234	309	0.25	237	1204	5.08	-2.17	0.22	786	533	0.68	381	862	2.26	-0.87	0.55
R5_c01_0	R01	-TIGR		Non-prote	AK10	09199	GTTAAC1	7115	6952	0.98	7009	6983	1.00	-0.01	0.99	5088	3546	0.70	3675	5332	1.45	-0.53	0.69
R5_c01_0	LOC	C_Os0	3-beta-hy	Emopami	AK05	59848	TATCATT	3562	3442	0.97	3506	2936	0.84	0.10	1.07	2307	1241	0.54	1469	1912	1.30	-0.64	0.64
R5_c01_0	LOC	C_Os0	expresse	Conserve	AK07	70525	GCCTTA	510	805	1.58	808	459	0.57	0.74	1.67	278	463	1.66	400	258	0.65	0.68	1.61
R5_c01_0	LOC	C_Os0	expresse	Conserve	AK10	02782	AAGTGC	9162	8565	0.93	8279	8724	1.05	-0.09	0.94	6107	3544	0.58	3973	6545	1.65	-0.75	0.59
R5_c01_0	LOC	C_Os0	expresse	Polynucle	AK06	69975	CTACAG	65	25	0.39	30	26	0.89	-0.60	0.66	52	13	0.25	13	19	1.44	-1.27	0.41
R5_c01_0	LOC	C_Os0	leucine-ric	C-type led	AK07	72087	GGCCTC	6234	4698	0.75	4361	5972	1.37	-0.43	0.74	4111	2839	0.69	2496	4005	1.60	-0.61	0.66
R5_c01_0	LOC	Os0	expresse	Zinc finger	AK07	72797	ACTATO	53471	45585	0.85	42383	47789	1.13	-0.20	0.87	36434	35200	0.97	25112	21785	0.87	0.08	1.06
R5_c01_0	LOC	C_Os0	NAC don	No apical	LOC	_Os0	TGTACTO	23	34	1.50	14	33	2.37	-0.33	0.79	29	15	0.51	16	50	3.13	-1.30	0.41
R5_c01_0	LOC	 C_Os0	hypothetic	NONE	LOC	OsO	ттстсс	17	26	1.50	38	40	1.05	0.26	1.19	16	37	2.24	36	101	2.83	-0.17	0.89
		_		Ricin B-re	-	-			16404	1.98	13288	8507	0.64	0.82	1.76	5391	13095	2.43	11688	6357	0.54	1.08	2.11
		_		No apical					106	0.65	117	181	1.55	-0.63	0.65		104	0.61	122	180	1.47	-0.64	
		_		a Similar to					10359	1.06	9372	7992	0.85	0.16			6099	1.00	5851	5267	0.90	0.08	
		-	-				TCTTGC		2939	39.55	2459	16	0.01	6.30			13	1.11	13	14	1.04	0.05	


MapMan is a user-driven tool that displays large datasets (e.g. gene expression data from Arabidopsis Affymetrix arrays) onto diagrams of metabolic pathways or other processes.

MapMan

http://mapman.gabipd.org/web/guest/mapman


Bin	Functional Cotons	6 h_UF	1	6 h_DOV	VN I	72 h_U	P	72 h_DOWN		
Bin	Functional Category	Count -	% -	Count -	% -	Count -	% +	Count -	% -	
1	PS	2	1.1	1	0.4	1	0.4	0	0.0	
2	major CHO metabolism	0	0.0	3	1.3	3	1.3	0	0.0	
3	minor CHO metabolism	1	0.5	5	2.2	1	0.4	1	0.5	
4	glycolysis	1	0.5	0	0.0	1	0.4	0	0.0	
5	fermentation	1	0.5	0	0.0	0	0.0	1	0.5	
7	OPP	0	0.0	- 1	0.4	0	0.0	0	0.0	
å	TCA / org. transformation	1	0.5	1	0.4	0	0.0	3	1.5	
10	cell wall	1	0.5	5	2.2	6	2.6	1	0.5	
11	lipid metabolism	2	1.1	5	2.2	6	2.6	1	0.5	
12	N-metabolism	1	0.5	0	0.0	0	0.0	0	0.0	
13	amino acid metabolism	1	0.5	2	0.9	4	1.7	0	0.0	
15	metal handling	0	0.0	1	0.4	1	0.4	2	1.0	
16	secondary metabolism	2	1.1	3	1.3	11	4.7	4	2.0	
17	hormone metabolism	4	2.2	2	0.9	10	4.3	12	5.9	
18	Co-factor and vitamine metabolism	0	0.0	1	0.4	1	0.4	1	0.5	
19	tetrapyrrole synthesis	0	0.0	0	0.0	2	0.9	0	0.0	
20	stress	7	3.8	11	4.9	5	2.1	16	7.9	
21	redox.regulation	2	1.1	0	0.0	3	1.3	1	0.5	
22	polyamine metabolism	1	0.5	0	0.0	0	0.0	0	0.0	
23	nucleotide metabolism	0	0.0	0	0.0	2	0.9	1	0.5	
26	misc	11	6.0	14	6.2	23	9.8	22	10.8	
27	RNA	17	9.2	16	7.1	15	6.4	20	9.9	
28	DNA	3	1.6	2	0.9	2	0.9	0	0.0	
29	protein	45	24.5	19	8.4	25	10.6	11	5.4	
30	signalling	3	1.6	22	9.8	15	6.4	19	9.4	
31	cell	1	0.5	6	2.7	5	2.1	2	1.0	
33	development	3	1.6	2	0.9	1	0.4	4	2.0	
34	transport	6	3.3	7	3.1	9	3.8	6	3.0	
35	not assigned	69	37.5	101	44.9	89	37.9	79	38.9	
	The number of non-redundant gene	184	100	225	100	235	100	203	100	

STRESS CHARACTERISTICS

STRESS CHARACTERISTICS

Molecular Analyses – PROTEOMICS

Preparation of LB-TT

- 1. Add 4 g CHAPS in a 300 (or 500) mit very clean/sterile Glass Beaker (calibrated if possible).
- 2. Dissolve in 50 mt. MQ water by slowly shaking using wrist movement; or better use a stirrer to mix, not to strongly...
- 3. 42 g of Urea was measured and added in parts, and mixed by gently turning the bealer.
- Occasionally dip the beaker end in a 40-50°C water bath; for 15 sec or so, not too long at one time.
- 5. Add 15.2 g Thiourea and mis gently again/stirrer.
- 6. Into the dissolved mixture solution add 1.8 ml, of 1 M Tris-HCl and mix/stirrer.
- Add 169.5 mg Trisma base and mix nicely/stirrer.
- 8. Take 2 tablets of EDTA-free proteinase inhibitor and dissolve (need to use stirrer for 10 min or so...).
- 9. To this mixture add slowly 0.2 mt. of Triton X-100 and mix avoiding air bubbles.
- 10. To the almost completely dissolved buffer solution add 771.5 mg of DTT and mis/stic.
- 11. Finally, add 1 mL of Ampholyte and mix up to 100 mL with MQ water (be careful to rinse any powders in the beaker walls by MQ)
- 12. Vacuum filter the solution with a 0.45 or 0.22 micron SteriCup filter unit or Syringe filter unit.
- 13. Store 1 ml. filtered LB-TT in Eppendorf tubes at -80°C.
- 14. Thaw at room temperature (RT) before use.

LB-TT is a modified (1505 BUFFER, which was originally developed by O'Pariell in 1975 IO Farrell, P. N., J Biol Chem 1975, JSC, 4007 40213.

1. $C-0h = RF1 \times 2 \text{ tubes}$ (lyophilized)

2. $T-72h = RF3 \times 2 \text{ tubes (lyophilized)}$

Note – If each tube contents are solubilized in 100 μL LB-TT we get a yield of 2.16 microgram per microliter protein.

Protein Extraction PROTOCOL

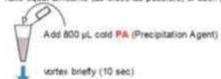
See also - Agrawal GK, Jwa NS, Jung YH, Kim ST, Kim DW, Cho K, Shibato J and Rakwal R: Rice proteomics: sample preparation to protein identification, In: Methods in Molecular Biology: Rice Protocols (Editor, Y. Yang), The Humana Press, New Jersey, USA, 956: 151-184. doi: 10.1007/978-1-62703-194-3 12. 2013.

ProteoExtract Protein Precipitation Kit Protocol (Illustrated)

Prepare Precipitation Agent (Kit components)

To one bottle of Precipitant 1 (29 mL), add 1.7 mL of Precipitant 2, 3 and 4.

MIX WELL, and label PRECIPITATION AGENT-PA (34.1 mL solution; store at - 20°C)

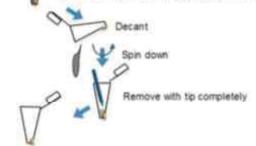

Prepare Wash Solution

Add 150 mL ethanol to the provided Wash solution (Kit component).

Mix and reconstituted WASH SOLUTION can be stored for 1 year at - 20°C.

PROCEED FOR PRECIPITATION/CLEANUP

Take equal amounts (as close as possible) of each protein in 200 µL volume



Incubate at - 20°C for 60 min, OR for 45 min at - 45°C.

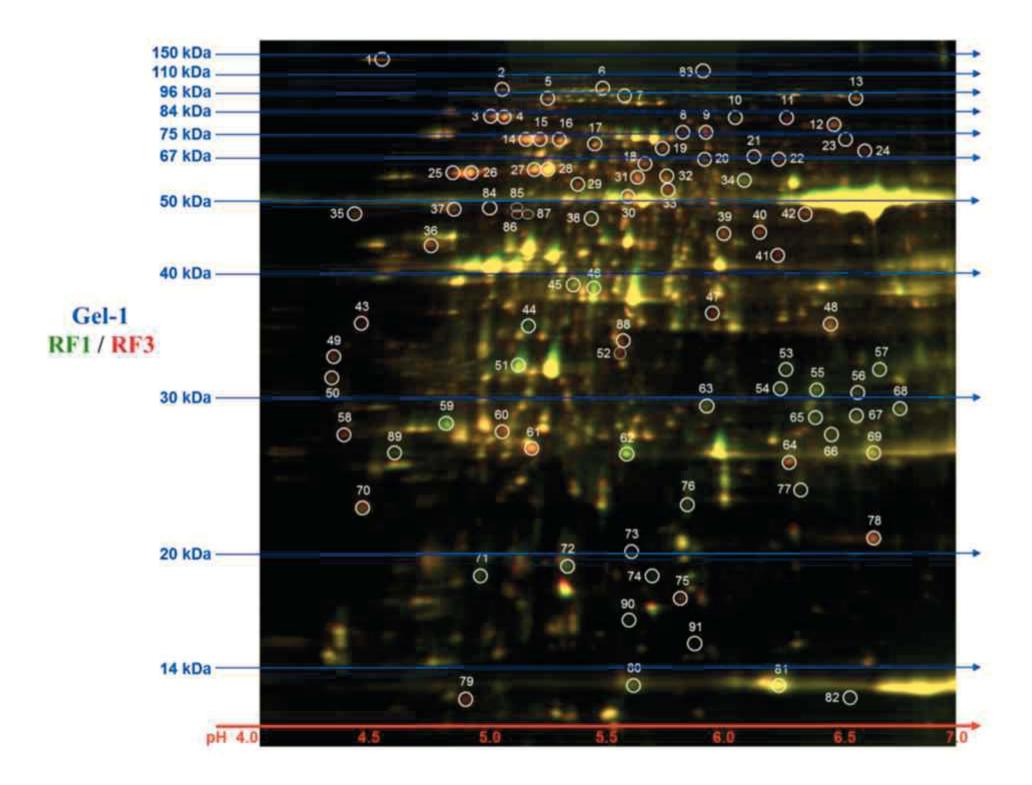
Centrifuge at 15,000 rpm for 10 min at 4°C.

Aspirate the pellet

First decant solution, then spin down & remove remaining solution with pipette

500 µL cold Wash Solution

Wash the PELLET by tapping and slight vortexing.


Centrifuge at 15,000 rpm for 2 min at 4°C.

First decant, then spin down and remove with tip.

Completely aspirate the pellet and air dry the pellet for 5 min (1-DGE) or 1 h (2-DGE).

Repeat 1 time

Dissolve the PELLET in buffer of choice (or LB-TT)

Spot number	MALD! well number	Match Quality	Top Ranked Pretein Name [Species]	Accession No.	Protein MW	Protein PI	Pep.Count	Protein Score	Protein Scare C.I.%	Total Ion Score	Total Ion C.I.%	Comments or Other Possibilities
1	01		Protein STAR1 OS-Onyce sative subsp. Japonica CRI-STAR1 PE	START_ORYSJ	36,955	1.0	- 1	26		26	90	post-translational modecation?
2	02		Ribulose traphosphate carboxylese small chain, chiproplastic OS	RBS1_ORYSJ	19,634	9.0	7	40	45			
3	D3		Heat shock protein \$1-1 OS=Oryze setive suitep, japonice OH=H	HSP\$1_ORYS/	80,544	5.0	14	67	180	16	. 77	
4	D4		OSJNEw0091D06.15 (Dryza satua Japonica Graup)	g636567873	82,223	5.7	25	700	100	567	100	
- 5	05		Cell division cycle protein 48, putative, expressed (Gryza sative).	96110289141	89,755	5.1	24	205	100	21	100	
6	D6		chteroplast inner envelope protein, putative, expressed (Oryza s	g(110209317	110,725	5.5	- 00	279	100	115	100	
7	70		Pyruvate, phosphate dikinase 2 OS+Oryca sativa subap, japonio	PROKQ_DRYSU	96,491	5.4	11	123	100	105	100	
	Ditt		Endormonuclease Dicer homolog 1 OS+Dryza eativa subsp. japo	DCL1_DRYSJ	210,070	6.2		24		24	34	degradation product?
9	D9		Oe02g0285800 jOryza sativa Japonica Group)	g#115445587	73,465	7.5	27	633	100	401	100	post-translational modification?
10	D10		Os02g0519900 (Oryza sative Japonica Group)	g6115446365	85,961	5.9	27	200	100	89	100	degradation product?
- 11	D11		DEAD-box ATP-dependent RNA helicase 3, chloroplastic OS+Gr	The second second second	81,566	5.1	27	472	100	293	100	
12	D12		5-nethyletiahydropleroytripidaniele-honocysleine nethylransi	Participation of the Participa	84,582	5.9	19	218	100	136	100	
13	D13		Ce04g0118400 [Cryza sativa Japonica Group]	g811545E914	93.913	5.9	20	83	36	28		
14	D14		heat shock protein 70 [Cryca sative Indica Group]	\$621664257	71,963	5.2	36	700	100	605	100	
15	D15		Rectians: Full-Heat shock cognate 70 kDe protein	98123850	71,162	5.1	21	546	100	425	100	
16	D16		ATP-dependent zinc metallogratease FTSH 1, chiumpiastic OS-C	The second secon	72,668	5.5	12	129	180	82	100	
17	D17	_	Putative heat shock 70 KD protein, intechendral precursor [Dryd	Committee on the Committee of the Commit	70,463	5.5	18	247	180	158	100	
18	D10		Protein STAR1 OS-Oryza sativa subsp. Japonica Oti-STAR1 PE	Control Control Control Control Control Control	36,955	9.0	- 2	38	40	33		post-translational modification?
19	D19		Phosphophicomulase, cytopiasnic 2, putative, expressed (Oryza	A description of the last	54.499	5.7	16	196 413	100	113		post-translational modification?
20	020	_	Os01g0372700 (Dryza sativa Japonica Group)	g8115436814	62.549 78.160	6.0	21	407	100	271	100	
21	021		putative thiamin timeyrithesis protein (Dryza sative Japonica Gro		70,160	8.0	26	523	100	329	100	
22	D22		putative thamin biosynthesis protein (Dry 2s sative Japonica Gro-	Contract to the contract of th	75,451	6.1	12	58	29	18	54	
23	D23 D24		Phenylelenine ammonia-lysee OS-Oryza setiva subep. japonos i Riburose biaphosphale carboxylese amail chain, chiproplastic OS	and the second s	19,534	9.5	- 14	40	19	- 14		
24 25	E1		Protein START OS-Crycz sative subsp. Japonica GN+START PE	The second secon	36,955	5.0	- 1	32		21	34	
26	E2		Recliame: Full-RutheCO large subunit-binding protein subunit als		57,485	4.5	16	231	100	151	100	
27	E3	_	Endoribonuciesse Dicer homolog 3s OS+Dryza sativa subsp. (so		104,774	6.4	20	42	95	- 177		Standardon modelnes
28	E4		Rectioner Full-RuttinCO large subunit binding protein automit bet	And the Control of th	82.945	5.9	13	108	100	405	100	degradation product?
29	E5		ATF synthese aubunt eighe, chloroplestic OS+Gryza sativa aubi		55.630	€.0	- 1	91	100	57		post-translational modification?
30	E6		ATF synthese subunit beta, chipropiastic OS+Oryce sative subs	The second secon	53.921	5.4	26	1,100	100	831	100	
31	£7		Ketsi-acid reductoisomerase, chloroplastic OS+Oryza sativa sub	The second secon	62,358	6.0	15	700	100	608	100	
32	EB		Ketsi-acd reductosonerase, chloropiastic GS+Dryza sativa sub	Contract of the last of the la	62,336	6.0	15	409	180	406		see hit #2
33	E9	_	Thioredoxin reductions NTRC OS-Dryce settive subsp. japonice O	The second liverage and the se	56.116	6.1	10	101	150	120		see hits #s 2 and 6
34	E10		ATF synthese subunt signs, chloroplastic OS-Gryze salive sub-	Charlest Advanced programmers by the district	55.830	4.0	30	879	100	605	100	
35	E11		Calredovin OS-Dryza sativa subsp. Japonica GN-Os07g824620	And the second second	40.279	4.5	12	165	100	102	100	
36	E12		Fructione-1.6-biaphosphatase, chloroplastic OS+Oryza sativa su		43,577	5.0	.13	101	100	105	100	
37	E13		Os08g0000000 (Ovyza sahva Japonica Grsup)	gi115407746	55,354	5,2	30	842	100	394	100	degradation product?
38	E14		Eukaryotic retation Yactor 4.41 OS-Grype setive subsp. japonics	E4A1_ORYSJ	47,058	5.4	15	390	100	253	100	
39	E15		5-adenosymethorine synthese 2 GS-Cryps sative subsp. japor	METRO_ORYS!	42,874	5.7	25	700	100	456	100	see hit #4:
40	E16		5-adenosymethorine synthese 1 OS-Oryce sativa subsp. japor		45,193	5.7	23	792	.100	148	100	
41	E17		Charcone synthese 1 OS+Gryza sative subap. Japonica GN+CH	DK\$1_DRYSJ	43,237	5.9	14	365	100	269	100	
42	E18		Ributzae Eispheaphale carborylese large chain DS+Oryza salive	REL_DRYSI	52,847	6.2	14	- 66	100			
43	E19		Putative protein ABEZ 05+Oryza saltva subsp. japonica 04+Os	ASIZ_ORYSJ	34,100	9.7	7	31			-	
44	E20		Ox00g0240300 (Oryca salva Japonica Group)	g6115445243	34,154	5.3	.11	262	100	221	100	
45	E21		Ributuse braphosphate carboxylaseroxygenase activase, chlorol	RCA_DRYSI	51,421	5.4	10	401	100	497	100	degradation product?

DEAD-box helicases. A diverse family of proteins involved in ATP-dependent RNA unwinding, needed in a variety of cellular processes including splicing, ribosome biogenesis and RNA degradation

Superfamily II DNA and RNA helicases [DNA replication, recombination, and repair / Transcription / Translation, ribosomal structure and biogenesis]

Molecular cloning and characterization of a salinity **stress**-induced gene encoding DEAD-**boxheli case** from the halophyte Apocynum venetum.

Liu HH, Liu J, Fan SL, Song MZ, Han XL, Liu F, Shen FF. J Exp Bot. 2008;59(3):633-44. doi: 10.1093/jxb/erm355. Epub 2008 Feb 13.

Recent reports suggest that vitamin B1 (thiamine) participates in the processes underlying plant adaptations to certain types of abiotic and biotic stress, mainly oxidative stress.

The upregulation of **thiamine** (vitamin B1) **biosynthesis** in Arabidopsis thaliana seedlings under salt and osmotic **stress** conditions is mediated by abscisic acid at the early stages of this **stress response**.

Rapala-Kozik M, Wolak N, Kujda M, Banas AK.

BMC Plant Biol. 2012 Jan 3;12:2. doi: 10.1186/1471-2229-12-2.

The primary product of this enzyme is 4,2',4',6'-tetrahydroxychalcone (also termed naringenin-chalcone or chalcone), which can under specific conditions spontaneously isomerize into naringenin. Secondary metabolite biosynthesis; flavonoid biosynthesis.

Gene expression profiles deciphering **rice** phenotypic variation between Nipponbare (Japonica) and 93-1 (Indica) during oxidative **stress**.

Liu F, Xu W, Wei Q, Zhang Z, Xing Z, Tan L, Di C, Yao D, Wang C, Tan Y, Yan H, Ling Y, Sun C, Xue Y, Su Z. PLoS One. 2010 Jan 8;5(1):e8632. doi: 10.1371/journal.pone.0008632.

Conclusion 1:

- 1. Gamma radiation effects rice plant growth under low-dose
- 2. Three days exposure to rice plant produces –

- ✓ Damage to leaf tips
- ✓ Change in expression of

DNA damage/repair genes

Defense/stress-related genes

Large number of genes genome-wide

✓ Change in protein abundance proteome-wide

Manuscript in Preparation – INVITATION Journal of Heredity

Observation of Rice Gene/Protein Expression by Low-level Gamma Ray Exposure in litate Village

G. Hayashi¹, T. Imanaka², J. Shibato³, N. Itoh⁴, A. Meguro⁵, S. Kimura⁶, A. Kubo⁷, S. Ozawa⁸, K. Ichikawa⁹, S. Fukutani², S. Kikuchi¹⁰, Kyoungwon Cho¹¹, Jai Singh Rohila¹², Ganesh Kumar Agrawal¹³, Randeep Rakwal^{3,13,14*}

¹Tohoku University, ²Kyoto University, ³Showa University School of Medicine, ⁴Iitate Farm, Iitate Village, ⁵Iitate Village, ⁶Dokkyo Medical University, ⁷National Institute for Environmental Studies, ⁸Environment Journalist, Tokyo, ⁹Office Brain, Tokyo, ¹⁰National Institute of Agrobiological Sciences, ¹¹Korea Basic Science Institute, ¹²South Dakota State University, ¹³Research Laboratory for Biotechnology and Biochemistry, Nepal, ¹⁴University of Tsukuba



In Progress:

1. Radionuclides in Rice Stalk/Leaf and Seed

2. Gene, Protein, and Metabolite Expressions

Generation Next – Let's not Forget

